Performance of Three MODIS Fire Products (MCD45A1, MCD64A1, MCD14ML), and ESA Fire_CCI in a Mountainous Area of Northwest Yunnan, China, Characterized by Frequent Small Fires

نویسندگان

  • Davide Fornacca
  • Guopeng Ren
  • Wen Xiao
چکیده

An increasing number of end-users looking for ground data about fire activity in regions where accurate official datasets are not available adopt a free-of-charge global burned area (BA) and active fire (AF) products for applications at the local scale. One of the pressing requirements from the user community is an improved ability to detect small fires (less than 50 ha), whose impact on terrestrial environments is empirically known but poorly quantified, and is often excluded from global earth system models. The newest generation of BA algorithms combines the capabilities of both the BA and AF detection approaches, resulting in a general improvement of detection compared to their predecessors. Accuracy assessments of these products have been done in several ecosystems; but more complex ones, such as regions that are characterized by frequent small fires and steep terrain has never been assessed. This study contributes to the understanding of the performance of global BA and AF products with a first assessment of four selected datasets: MODIS-based MCD45A1; MCD64A1; MCD14ML; and, ESA’s Fire_CCI in a mountainous region of northwest Yunnan; P.R. China. Due to the medium to coarse resolution of the tested products and the reduced sizes of fires (often smaller than 50 ha) we used a polygon intersection assessment method where the number and locations of fire events extracted from each dataset were compared against a reference dataset that was compiled using Landsat scenes. The results for the two sample years (2006 and 2009) show that the older, non-hybrid products MCD45A1 and, MCD14ML were the best performers with Sørensen index (F1 score) reaching 0.42 and 0.26 in 2006, and 0.24 and 0.24 in 2009, respectively, while producer’s accuracies (PA) were 30% and 43% in 2006, and 16% and 47% in 2009, respectively. All of the four tested products obtained higher probabilities of detection when smaller fires were excluded from the assessment, with PAs for fires bigger than 50 ha being equal to 53% and 61% in 2006, 41% and 66% in 2009 for MCD45A1 and MCD14ML, respectively. Due to the technical limitations of the satellites’ sensors, a relatively low performance of the four products was expected. Surprisingly, the new hybrid algorithms produced worse results than the former two. Fires smaller than 50 ha were poorly detected by the products except for the only AF product. These findings are significant for the future design of improved algorithms aiming for increased detection of small fires in a greater diversity of ecosystems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Can We Go Beyond Burned Area in the Assessment of Global Remote Sensing Products with Fire Patch Metrics?

Global burned area (BA) datasets from satellite Earth observations provide information for carbon emission and for Dynamic Global Vegetation Model (DGVM) benchmarking. Fire patch identification from pixel-level information recently emerged as an additional way of providing informative features about fire regimes through the analysis of patch size distribution. We evaluated the ability of global...

متن کامل

Validation of the Two Standard MODIS Satellite Burned-Area Products and an Empirically-Derived Merged Product in South Africa

The 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) burned area products, MCD45A1, MCD64A1, and a merged product were validated across six study sites in South Africa using independently-derived Landsat burned-area reference data during the fire season of 2007. The objectives of this study were to: (i) investigate the likelihood of the improved detection of small burns through an em...

متن کامل

Mapping the daily progression of large wildland fires using MODIS active fire data

High temporal resolution information on burnt area is needed to improve fire behaviour and emissions models. We used theModerate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly and active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuousmaps of the timing of burnt area for 16 large wildland fires. For each fire, parameters for the kriging model were d...

متن کامل

تجزیه و تحلیل آتش‌سوزی جنگل با منشأ آب‌و‌هوایی با داده‌های ماهواره‌ای در منطقه‌ی البرز

Forest fire is one of the important problems in Iran which is caused by different factors such as human and natural factors. One of these factors is climate conditions that can be created by heat wave and special circulation of atmospheric phenomena. Occurrence of forest fire in north of Iran have different impacts on environment such as destruction of natural. According to the position of Iran...

متن کامل

Burned Area Mapping in the North American Boreal Forest Using Terra-MODIS LTDR (2001-2011): A Comparison with the MCD45A1, MCD64A1 and BA GEOLAND-2 Products

An algorithm based on a Bayesian network classifier was adapted to produce 10-day burned area (BA) maps from the Long Term Data Record Version 3 (LTDR) at a spatial resolution of 0.05° (~5 km) for the North American boreal region from 2001 to 2011. The modified algorithm used the Brightness Temperature channel from the Moderate Resolution Imaging Spectroradiometer (MODIS) band 31 T31 (11.03 μm)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017